Query-Efficient Imitation Learning for End-to-End Simulated Driving

Jiakai Zhang, Kyunghyun Cho

New York University

Overview

- Introduction
 - End-to-end learning for self-driving
 - Related work
- Learning method
 - Convolutional neural network
 - Imitation learning using SafeDAgger
- Experiment
 - Setup
 - Results
- Conclusion and future work

Introduction

End-to-end learning for self-driving

Sensory input from front-facing camera

Control signal

Steering

Brake

Introduction

Related work

- Supervised learning
 - ALVINN net [Pomerleau 1989]
 - DeepDriving [Chen et al. 2015]
 - End-to-end learning for self-driving cars [Bojarski et al. 2016]
- Imitation learning
 - DAgger [Ross, Gordon, and Bagnell 2010]
 - SafeDAgger [Zhang and Cho 2017]

DAgger algorithm

SafeDAgger algorithm

Safety classifier

• Deviation of a primary policy from a reference policy defined

 $\epsilon(\pi, \pi^*, \phi(s)) = \|\pi(\phi(s)) - \pi^*(\phi(s))\|^2$

- Optimal safety classifier defined as $c_{\text{safe}}^*(\pi, \phi(s)) = \begin{cases} 0, & \text{if } \epsilon(\pi, \pi^*, \phi(s)) > \tau \\ 1, & \text{otherwise} \end{cases}$
- Learning safety classifier
 - Minimize a binary cross-entropy loss $l_{\text{safe}}(c_{\text{safe}}, \pi, \pi^*, D') = -\frac{1}{N} \sum_{n=1}^{N} c_{\text{safe}}^*(\phi(s)'_n) \log c_{\text{safe}}(\phi(s)'_n, \pi) + (1 - c_{\text{safe}}^*(\phi(s)'_n)) \log(1 - c_{\text{safe}}(\phi(s)'_n, \pi))$

Training tracks

Test tracks

Experiment – Model

Optimization algorithm: stochastic gradient descent

Safe Frames

Evaluation on test tracks

- 1. Mean squared error of steering angle
- 2. Damage per lap
- 3. Number of laps
- 4. Portion of time driven by a reference policy

Dashed curve – with traffic Solid curve – without traffic

Number of Laps

Dashed curve – with traffic Solid curve – without traffic

Portion of time driven by a reference policy

Dashed curve – with traffic Solid curve – without traffic

Demo

Conclusion

Proposed SafeDAgger algorithm

- Query efficient
- Safety feature
- End-to-end simulated driving
 - Trained a convolutional neural network to drive in TORCS with traffic

Future work

- Evaluate SafeDAgger in the real world
 - Learn to use temporal information