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Introduction

» End-to-end learning for self-driving

* Sensory input from front-facing camera

* Control signal

o

Steering Brake




Introduction

» Related work

* Supervised learning
* ALVINN net [Pomerleau 1989]
* DeepDriving [Chen et al. 2015]

* End-to-end learning for self-driving cars [Bojarski et al. 2016]

* Imitation learning
* DAgger [Ross, Gordon, and Bagnell 2010]
SafeDAgger [Zhang and Cho 2017]



DAgger algorithm
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SafeDAgger algorithm
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» Safety classifier

* Deviation of a primary policy from a reference
policy defined

e(m, 7, 0(5)) = [|7(6(s)) — 7 ((s))||°

* Optimal safety classifier defined as
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» Learning safety classifier

* Minimize a binary cross- entropy loss
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Experiment — Setup

» TORCS — Open source racing game
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Input image — 3x160x72

Convolutional layer — 64x3x3 A
X
Max Pooling — 2x2

Convolutional layer — 128x5x5

Fully connected layer x 2

Control Environment

signals variables

Primary policy

-)

Experiment — Model

Feature map

Fully connected layer x 2

Safety value

Safety classifier

Optimization algorithm: stochastic gradient descent



Results

Safe Frames
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Results

» Evaluation on test tracks

1. Mean squared error of steering angle
2. Damage per lap

3. Number of laps
4

. Portion of time driven by a reference policy



Results

MSE (Steering Angle)
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Results

Damage per Lap
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Results

Number of Laps
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Results

—  DAgger 5 —
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Conclusion
» Proposed SafeDAgger algorithm

*  Query efficient
* Safety feature

» End-to-end simulated driving

e Trained a convolutional neural network to drive in
TORCS with traffic

Future work

» Evaluate SafeDAgger in the real world

» Learn to use temporal information



