Chance-Constrained Path Planning with Continuous Time Safety Guarantees

Kaito Ariu, Cheng Fang, Marcio Arantes, Claudio Toledo, and Brian Williams

Outline

- Background (pSulu)
- Safety of trajectory mean
- Reflection Principle for trajectory safety
- Results
- Summary

Background

• Path or trajectory planning – obstacles as nonconvex constraints

Multiple goals directed traj. planning[1]

Traj. Planning on a B-plane. Black area has collision probability. A spacecraft should avoid the area.[2]

Ono, Masahiro, Brian C. Williams, and Lars Blackmore. "Probabilistic planning for continuous dynamic systems under bounded risk." Journal of Artificial Intelligence Research 46 (2013): 511-577.
Sarli, Bruno Victorino, Kaito Ariu, and Hajime Yano. "PROCYON's probability analysis of accidental impact on Mars." Advances in Space Research 57.9 (2016): 2003-2012.

Background

• Under Gaussian stochastic disturbances:

Uncertainty propagation under open loop control

Key idea: chance-constraints

- Provide probabilistic guarantee: "acceptable losses"
- Optimise given risk bound:
 - "Minimise fuel consumption, s.t. probability of reaching goal safely is greater than 99%"

Problem definition

$$\min_{U} \sum_{k=1}^{T} |u_{k}|$$

s.t. $x_{k+1} = Ax_{k} + Bu_{k} + w_{k}$
 $u_{min} \le u_{k} \le u_{max}$
 $w_{k} \sim N(0, \Sigma_{w})$
 $x_{0} \sim N(\bar{x}_{0}, \Sigma_{x,0})$
 $P\left(\bigwedge_{k=0}^{T} \bigwedge_{i=1}^{N} \bigvee_{j=1}^{M_{i}} h_{k}^{i,j} x_{k} \le g_{k}^{i}\right) \ge 1 - \Delta$

Prior work

- pSulu chance-constrained path planner
- Key insight:
 - Union bound: $P(A \cup B) \le P(A) + P(B)$
 - Risk as resource
 - Fixed risk => MILP
 - Iterative risk allocation (IRA): redistribute risk for better solutions

Bi-stage optimization: IRA and MILP

Iteratively solving the risk allocation problem and the deterministic trajectory optimization problem, a near optimal trajectory can be produced

IRA: Iterative Risk Allocation

2017/2/12

: Safety margin at each state. The risk is calculated for each state point

Safety of trajectory mean

- Recent encoding: for each obstacle, require two consecutive time steps to share an active boundary
 - Require consecutive mean points to be on the same side of obstacle
- Required assumption: Given consecutive time steps x_t, x_{t+1} , the mean state at time $x_{t+\alpha} = (1 \alpha)x_t + \alpha x_{t+1}$ for all $\alpha \in [0,1]$

Outline

- Background (pSulu)
- Safety of trajectory mean
- Reflection Principle for trajectory safety
- Results
- Summary

Problem of the encoding

- Prior encoding provides two guarantees:
 - Probabilistic guarantee of safety at discrete time points (same as original pSulu)
 - Guarantee that the mean trajectory is obstacle free
- Question:
 - Is this equivalent to guaranteeing continuous trajectory safety?

Numerical check

- Example problem:
 - Vehicle must round a corner and arrive at the goal area
 - Impulse velocity control
 - 3 time steps of 1s each
 - 20% risk bound
- Solution from pSulu with mean safety
- Simulation:
 - Simulated with 0.02s intervals
 - Noise scaled according to time
 - Of 10000 samples, 3491 collided with the obstacle

Intuition for numerical result

- The traversal in between time steps is important
- Even if noise is added according to the time step size used, there is a greater chance of collision
 - There are more time steps for the vehicle state
 - Hence there are more chances for a boundary crossing
- Give the above, can we still give guarantees for continuous time?

Outline

- Background (pSulu)
- Safety of trajectory mean
- Reflection Principle for trajectory safety
- Results
- Summary

Some observations

- We really wanted to plan for continuous time
- From the original formulation of pSulu problem
 - Noise is additive, Gaussian
 - Consider expected position and actual position as functions of time $\bar{x}(t)$ and x(t)
 - Then, deviation from the expected state is

 $\tilde{x}(t) = x(t) - \bar{x}(t)$

Brownian motion

- From the model used in the original pSulu
 - Property 1: $\tilde{x}(t)$ has independent increments
 - Property 2: $K(\tilde{x}(t) \tilde{x}(s)) \sim N(0, t s)$ for some constant *K* (intuition: this is because the noise is a bunch of additive Gaussians)
- We add the following assumptions
 - Property 3: $\tilde{x}(0) = 0$ (this can be relaxed)
 - $\tilde{x}(t)$ is almost surely continuous (this is to allow for continuous time)
- Then, taking all of the above, $\tilde{x}(t)$ satisfies all the requirements for it to be a Brownian motion.
- Hence $h\tilde{x}(t)$ is a Brownian motion for vector h

The Reflection Principle

• For any Brownian motion we can apply the Reflection Principle

Reflection principle: For the Brownian motion, $P\left(\max_{0 \le s \le T} w(s) \ge a\right) = 2P(w(T) \ge a)$

Intuitive description:

Implementation of the reflection principle

• Current risk allocation in IRA: for each time step: for each side of the obstacle: allocate risk (based on the covariance of each time)	
end	e
P(Obstacle)	
Using the corresponding covariance variable Ensures the probability for each step	

Modified risk allocation in IRA. for each time segment: for each side of the obstacle: allocate risk (based on covariance at end time step) end end $2 \times F$ Obstacle Twice of the collision probability at the end point Ensures the probability for the entire path segment

Outline

- Background (pSulu)
- Safety of trajectory mean
- Reflection Principle for trajectory safety
- Results
- Summary

Results

For the specified 20% risk:

Prior encoding

	Sim time	Collision time	(Nominal) Obj fun
Reflection	10000	621	3.011812
Principle			
encoding			
Discrete time	10000	3491	2.906687
encoding			

Results

 We compared the objective function and computation times between previous algorithm and our algorithm for 4 (type of maps) × 50 (number of sample maps) = 200 maps.

Results

	Avg. soln. time (new:old)	Avg. obj. (new:old)	No solution maps (new)	No solution maps (old)
Map 12	0.620447432	1.02092499 6	0	0
Map W12	0.585377489	1.00671187 1	0	0
Map 16	1.726021078	1.06434422 6	2	0
Map W16	0.674433433	1.01014466	2	0

Summary

- Prior work guaranteed safety of trajectory mean and discrete time steps
- Problem actually involves a Brownian process safety in continuous time not guaranteed
- Use Reflection principle to provide guarantees of trajectory safety
- New solution: correct, faster, not significantly worse in terms of utility
- Future work: look at nonlinear dynamics
 - No longer Brownian motion, but what concentration inequalities can we use?

Appendix

Background

• Trade off between risk and objective function (eg distance)

Background

• Trade off between risk and objective function (eg distance)

Why chance-constraints in general?

- Alternative approach: min expected loss
- Problematic when:
 - Difficult to characterise objective function (loss of science data during science surveys, cascading delays in airport scheduling)
 - Infinite penalty for loss (unique vehicles)

Relaxing Property 3

- Consider Brownian Motion w(s), w(0) = 0 by definition
- We know that $P\left(\max_{0 \le s \le T} w(s) \ge a\right) = 2P(w(T) \ge a)$
- $P\left(\max_{S_0 \le s \le T} w(s) \ge a\right) \le P\left(\max_{0 \le s \le T} w(s) \ge a\right)$ = $2P(x(T) \ge a)$

 This gives a conservative approximation and is what we use for segments

Why risk allocate over time step?

- From Reflection Principle
 - Only need to consider covariance at the last time step
 - We tried to take away risk allocation to time segments
 - Motivation:
 - We would then no longer break up the risk over so many steps, maybe less conservatism
 - Risk allocation still there over the most relevant corners
 - Result: More conservative than allocating to time segments
 - Although we're collapsing some of the risk allocations together, we are still working with a changing mean in position over time – allocation over time segments makes sense