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Background
• Path or trajectory planning – obstacles as nonconvex constraints
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Multiple goals directed traj. planning[1]

[1] Ono, Masahiro, Brian C. Williams, and Lars Blackmore. "Probabilistic planning for continuous dynamic systems under bounded risk. " Journal of Artificial Intelligence Research 46 (2013): 511-577.
[2] Sarli, Bruno Victorino, Kaito Ariu, and Hajime Yano. "PROCYON’s probability analysis of accidental impact on Mars." Advances in Space Research 57.9 (2016): 2003-2012.

Traj. Planning on a B-plane. Black area has 
collision probability.
A spacecraft should avoid the area.[2]



Background

• Under Gaussian stochastic disturbances:

Uncertainty propagation under open loop control
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Key idea: chance-constraints
• Provide probabilistic guarantee: “acceptable losses”

• Optimise given risk bound: 
• “Minimise fuel consumption, s.t. probability of reaching goal safely 

is greater than 99%”

Risk of 
failure Fuel 

Consumption
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Problem definition
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min
𝑈

σ𝑘=1
𝑇 |𝑢𝑘|

s.t. 𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑘 + 𝑤𝑘

𝑢𝑚𝑖𝑛 ≤ 𝑢𝑘 ≤ 𝑢𝑚𝑎𝑥

𝑤𝑘~ 𝑁(0, Σ𝑤)

𝑥0 ~𝑁 ҧ𝑥0 , Σ𝑥,0

𝑃 ∧𝑘=0
𝑇 ∧𝑖=1

𝑁 ∨𝑗=1
𝑀𝑖 ℎ𝑘

𝑖,𝑗
𝑥𝑘 ≤ 𝑔𝑘

𝑖 ≥ 1 − Δ



Prior work

• pSulu – chance-constrained path planner

• Key insight: 
• Union bound: 𝑃 𝐴⋃𝐵 ≤ 𝑃 𝐴 + 𝑃 𝐵

• Risk as resource

• Fixed risk => MILP

• Iterative risk allocation (IRA): redistribute risk for better solutions
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Bi-stage optimization: IRA and MILP
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Upper Stage:
Iterative Risk 

Allocation

Lower stage:
Deterministic 

Trajectory 
Optimization by MILPMean States

Risk Allocation

Iteratively solving the risk allocation problem and the deterministic trajectory optimization problem,
a near optimal trajectory can be produced

Our focus
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IRA: Iterative Risk Allocation
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Obs

: Safety margin at each state. The risk is calculated for each state point

Active Constraints

Obs
Obs

1. Find active (contacting) constraints 2. Reallocation of the risk 3. Re-optimization by MILP

Risk
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Safety of trajectory mean

• Recent encoding: for each 
obstacle, require two 
consecutive time steps to 
share an active boundary

• Require consecutive mean 
points to be on the same side 
of obstacle

• Required assumption: Given 
consecutive time steps 
𝑥𝑡 , 𝑥𝑡+1, the mean state at 
time 𝑥𝑡+𝛼 = 1 − 𝛼 𝑥𝑡 + 𝛼𝑥𝑡+1
for all 𝛼 ∈ [0,1]

Obs Obs
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Problem of the encoding

• Prior encoding provides two guarantees:
• Probabilistic guarantee of safety at discrete time points (same as original pSulu)
• Guarantee that the mean trajectory is obstacle free

• Question: 
• Is this equivalent to guaranteeing continuous trajectory safety?

Obstacle
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Numerical check

• Example problem:
• Vehicle must round a corner and 

arrive at the goal area
• Impulse velocity control
• 3 time steps of 1s each
• 20% risk bound

• Solution from pSulu with mean 
safety 

• Simulation: 
• Simulated with 0.02s intervals
• Noise scaled according to time 
• Of 10000 samples, 3491 collided 

with the obstacle
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Actual trajectories (10 samples)



Intuition for numerical result

• The traversal in between time steps is important

• Even if noise is added according to the time step size used, 
there is a greater chance of collision

• There are more time steps for the vehicle state

• Hence there are more chances for a boundary crossing

• Give the above, can we still give guarantees for continuous 
time?
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Some observations

• We really wanted to plan for continuous time

• From the original formulation of pSulu problem
• Noise is additive, Gaussian

• Consider expected position and actual position as functions of time 
ҧ𝑥(𝑡) and 𝑥(𝑡)

• Then, deviation from the expected state is 
෤𝑥 𝑡 = 𝑥 𝑡 − ҧ𝑥 𝑡
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Brownian motion 

• From the model used in the original pSulu
• Property 1: ෤𝑥 𝑡 has independent increments 

• Property 2: 𝐾 ෤𝑥 𝑡 − ෤𝑥 𝑠 ~𝑁(0, 𝑡 − 𝑠) for some constant 𝐾 (intuition: 

this is because the noise is a bunch of additive Gaussians)

• We add the following assumptions
• Property 3: ෤𝑥 0 = 0 (this can be relaxed)

• ෤𝑥 𝑡 is almost surely continuous (this is to allow for continuous time)

• Then, taking all of the above, ෤𝑥 𝑡 satisfies all the requirements 
for it to be a Brownian motion.

• Hence ℎ ෤𝑥 𝑡 is a Brownian motion for vector ℎ
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The Reflection Principle

• For any Brownian motion we can apply the Reflection Principle

Reflection principle:

For the Brownian motion,
𝑃 max

0≤𝑠≤𝑇
𝑤 𝑠 ≥ 𝑎 = 2𝑃 𝑤 𝑇 ≥ 𝑎

ObstacleP( )

Collision probability during the traversal

=2×P( Obstacle )
Twice of the collision probability at the end point
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Intuitive description:



Implementation of the reflection 
principle

• Current risk allocation in IRA:

for each time step:
for each side of the obstacle:

allocate risk 
(based on the covariance of each time)

end
end

• Modified risk allocation in IRA:

for each time segment:
for each side of the obstacle:

allocate risk 
(based on covariance at end time step)

end
end

ObstacleP( ) 2×P( Obstacle )
Twice of the collision probability at the end point
Ensures the probability for the entire path segment
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Using the corresponding covariance variable
Ensures the probability for each step
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Results

Sim time Collision time (Nominal) Obj fun
Reflection 
Principle 
encoding

10000 621 3.011812

Discrete time 
encoding

10000 3491 2.906687
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Prior 
encoding

With the 
reflection 
principle

For the specified 20% risk:



Results
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• We compared the objective function and computation times 
between previous algorithm and our algorithm for 4 (type of 
maps) × 50 (number of sample maps) = 200 maps.

12 Obstacles × 50 maps 16 Obstacles × 50 maps 12 Obstacles w/ wrapping
× 50 maps

16Obstacles w/ wrapping
× 50 maps



Results
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Avg. soln. time
(new:old)

Avg. obj. 
(new:old)

No solution maps
(new)

No solution
maps (old)

Map 12 0.620447432 1.02092499
6

0 0

Map W12 0.585377489 1.00671187
1

0 0

Map 16 1.726021078 1.06434422
6

2 0

Map W16 0.674433433 1.01014466 2 0



Summary

• Prior work guaranteed safety of trajectory mean and discrete 
time steps

• Problem actually involves a Brownian process – safety in 
continuous time not guaranteed

• Use Reflection principle to provide guarantees of trajectory 
safety

• New solution: correct, faster, not significantly worse in terms of 
utility

• Future work: look at nonlinear dynamics 
• No longer Brownian motion, but what concentration inequalities can we 

use?
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Appendix
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Background

• Trade off between risk and objective function (eg distance)

Risk minimization

Minimum risk trajectory
(Cannot reach the goal) Goal

Obstacle
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Background

• Trade off between risk and objective function (eg distance)

Objective minimisation

High probability of collision

Goal
Obstacle
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Why chance-constraints in general?

• Alternative approach: min expected loss

• Problematic when:
• Difficult to characterise objective function (loss of science data during 

science surveys, cascading delays in airport scheduling)

• Infinite penalty for loss (unique vehicles)
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Relaxing Property 3

• Consider Brownian Motion 𝑤 𝑠 , 𝑤 0 = 0 by definition

• We know that 𝑃 max
0≤𝑠≤𝑇

𝑤 𝑠 ≥ 𝑎 = 2𝑃 𝑤 𝑇 ≥ 𝑎

•

• This gives a conservative approximation and is what we use 
for segments
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a a

0 T Ts

≧

𝑃 max
𝑆0≤𝑠≤𝑇

𝑤 𝑠 ≥ 𝑎 ≤ 𝑃 max
0≤𝑠≤𝑇

𝑤 𝑠 ≥ 𝑎

= 2𝑃 𝑥 𝑇 ≥ 𝑎



Why risk allocate over time step?

• From Reflection Principle
• Only need to consider covariance at the last time step

• We tried to take away risk allocation to time segments
• Motivation: 

• We would then no longer break up the risk over so many steps, maybe less 
conservatism

• Risk allocation still there – over the most relevant corners

• Result: More conservative than allocating to time segments 

• Although we’re collapsing some of the risk allocations together, we are still working 
with a changing mean in position over time – allocation over time segments makes 
sense
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