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Abstract
In several mission-critical domains (e.g., self-
driving cars, cybersecurity, robotics) where ma-
chine learning algorithms are being used heav-
ily, it is becoming increasingly important to en-
sure that the learned models satisfy some domain
properties (e.g., temporal constraints). Towards
this goal, we propose Trusted Machine Learning
(TML), wherein we combine the strengths of ma-
chine learning and model checking. If the desired
logical properties are not satisfied by a trained
model, we modify either the model (‘model re-
pair’) or the data from which the model is learned
(‘data repair’). We outline a concrete case study
based on the Markov Chain model of a car con-
troller for ‘lane changing’ — we demonstrate how
we can ensure that such a model, learned from
data, satisfies properties specified in Probabilistic
Computation Tree Logic (PCTL).

1. Introduction
In machine learning (ML), a model is typically trained on
training data to be able to generalize better on unseen test
data — this usually involves learning some parameters of
the model by optimizing an objective function (e.g., likeli-
hood of observing the training data given the model). Ad-
ditionally, we often want the model to satisfy certain con-
straints. In the ML literature, there is a rich history of learn-
ing under constraints (Dietterich, 1985; Miller & MacKay,
1994). Different types of constrained learning algorithms
have been proposed for various kinds of constraints and
algorithms. Propositional constraints on size (Bar-Hillel
et al., 2005), monotonicity (Kotlowski & Slowiński, 2009),
time and ordering (Laxton et al., 2007), etc. have been in-
corporated into learning algorithms using techniques like
constrained optimization (Bertsekas, 1996) and constraint
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programming (Raedt et al., 2010). First order logic con-
straints have also been introduced into ML models (Mei
et al., 2014; Richardson & Domingos, 2006). Some prob-
lems have constraints that are better defined over temporal
sequences or trajectories in the model — these constraints
can be succinctly represented in temporal logic, e.g., Prob-
abilistic Computation Tree Logic (PCTL)(Sen et al., 2006).
To this end, we develop a methodology to train probabilis-
tic ML models that satisfy properties specified in temporal
logic, called Trusted Machine Learning (TML).

We illustrate the need for TML by a case-study where we
consider training an automatic car controller for the situa-
tion where there is a slow-moving car in front. We pro-
vide training data (D) in the form of example traces of driv-
ing in this situation in a simulated environment, and model
the controller (M ), using a Discrete-Time Markov Chain
(DTMC)(Sen et al., 2006). In our application, we want
the car controller to respect certain safety properties. For
example, we want the controller to ensure that it causes
the car to either change lanes or reduce speed with very
high probability. This can be stated as a PCTL property
Pr>0.99[F (changedLane | reducedSpeed)], where F is
the eventually operator in PCTL logic. Such temporal logic
properties are useful for specifying important characteris-
tics of mission-critical domains (e.g., self-driving cars, cy-
bersecurity). If the trained probabilistic ML model does not
satisfy a desired temporal logic property, we propose two
approaches to ensure that the model satisfies the property:

1) Model repair: The model can be changed “locally” (e.g.,
in a probabilistic model we can suitably modify transition
probabilities along the path of the unsafe trajectory), so that
the “repaired” model satisfies the desired property.

2) Data repair: The training data can be modified (e.g.,
modifying data features or target labels), so that the model
trained on this “repaired” data satisfies the desired property.

Here are the main contributions of our work:

1) We formulate the problem of Trusted Machine Learning
(TML), where we want a ML model trained on data to sat-
isfy properties specified in temporal logic.
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2) We propose two approaches to solve TML, Model Re-
pair and Data Repair, which apply principles of paramet-
ric model checking and machine teaching. For probabilistic
ML models that have to satisfy temporal logic properties, we
show how Model Repair and Data Repair can be both solved
using non-linear optimization, under certain assumptions.

3) We present a TML case-study for on a DTMC car con-
troller model and PCTL properties, using the PRISM model
checker and AMPL non-linear solver.

2. Motivating Example
Let us consider the example of training a ML model as an
autonomous car controller — the underlying model we want
to learn is a Discrete-Time Markov Chain (DTMC), which
is defined as a tuple M = (S, s0, P, L) where S is a finite
set of states, s0 ∈ S is the initial state, P : S × S → [0, 1]
is a function such that ∀s ∈ S,

∑
s′∈S Pr(s, s′) = 1, and

L : S → 2AP is a labeling function assigning labels to
states, where AP is a set of atomic propositions. Figure 1
shows the Markov Chain of an autonomous car controller
that determines the action of the controller when confronted
with a slow-moving car in front, while Table 1 describes the
semantics of the different states and labels. Note that the fig-
ure has parameters p and q in the state transition probabili-
ties, which are used for model repair (details in Section 3.1).

Figure 1. Markov Chain of car controller for changing lanes.

Let us consider that we have some property φ in PCTL that
we want the model M to satisfy. The PCTL logic is de-
fined over the DTMC model, where properties are speci-
fied as φ = Pr∼b(ψ), with ∼∈ {<,≤, >,≥}, 0 ≤ b ≤ 1,
and ψ a path formula defined using the X (next) and ∪≤h
(bounded/unbounded until) operators, for integer h. A state
s of M satisfies φ = Pr∼b(ψ), denoted as M, s |= φ, if
Pr(PathM (s, ψ)) ∼ b; i.e., the probability of taking a path
in M starting from s that satisfies ψ is ∼ b, where path is
defined as a sequence of states in the model M . PCTL also
uses the eventually operator F defined as Fφ = true ∪ φ,
i.e., φ is eventually true. For example, let us consider a
DTMC M in Figure 1 with start state S0. The “reduced-

Speed” predicate is true in the state S4, while “changed-
Lane” predicate is true in states S5 and S6. Now, a prob-
abilistic safety property can be specified as: φ = Pr>0.99

[F (changedLane | reducedSpeed)]. The model M will
satisfy the property φ only if any path starting from S0 even-
tually reaches S4, S5 or S6 with probability > 0.99.

Table 1. States and labels of Car Controller DTMC.
S Description Labels
0 Initial state keepSpeed, keepLane
1 Moving to left lane keepSpeed, changingLane
2 Moving to right lane keepSpeed, changingLane
3 Remain in same lane

with same speed keepSpeed, keepLane
4 Remain in same lane

with reduced speed reducedSpeed, keepLane
5 Moved to left lane changedLane
6 Moved to right lane changedLane

3. Approach
In TML we focus on efficient mechanisms of making an
existing ML model M satisfy property φ with minimal
changes to M — so we don’t consider approaches like cre-
ating product models using M and φ (Sadigh et al., 2014b),
since those typically lead to a large (often exponential)
blowup in the state space of the resulting model (Kupfer-
man & Vardit, 1998). Figure 2 shows the details of the TML
flow. Let us consider that we train the modelM from a given
training data D. We first use model checking on M to see
if M satisfies φ — if so, we output M . Otherwise, if M
does not satisfy φ, we next try to do a “local” modification
of model M using Model Repair (details in Section 3.1). If
that becomes infeasible, we finally try to do Data Repair of
the data D (details in Section 3.2).

3.1. Model Repair

We first learn the model M from data D using standard ML
techniques, e.g., maximum likelihood. When M does not
satisfy the given logical property φ, Model Repair tries to
minimally perturb M to M ′ to satisfy φ. The Model Repair
problem for probabilistic systems can be stated as follows:

Given a probabilistic modelM and a probabilistic temporal
logic formula φ, ifM fails to satisfy φ, can we find a variant
M ′ that satisfies φ such that the cost associated in modifying
the transition flows of M to obtain M ′ is minimized, where
M ′ is a “small perturbation” of M?

Note that the “small” perturbations to the model parameters
of M to get M ′ is defined according to ε-bisimilarity, i.e.,
any path probability in M ′ is within ε of the corresponding
path probability in M (Bartocci et al., 2011).
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We will illustrate the methodology of Model Repair using
the DTMC in Section 2. A DTMC M with n states can be
turned into a controllable parametric DTMC by considering
an n× n matrix Z that specifies which states of M are con-
trollable. The matrix Z gives a mechanism for altering or
controlling the behavior of M for repair — Z is added to
the transition matrix P of the DTMC, i.e., P ′ = P + Z. A
state of the DTMC is controllable if at least one transition
in/out of that node has a non-zero Z value. Figure 1 shows
the parametric DTMC, where some states are controllable.
Note that there are certain constraints on Z in a controllable
DTMC to make the Model Repair approach feasible, namely
∀s

∑
t∈S Z(s, t) = 0 (Bartocci et al., 2011).

Figure 2. Overall flow of TML.

Let us consider the non-zero values in Z to be the vector of
variables v = v1 . . . vk. Finding the optimal Z (that causes
the minimal change to M ) can be cast as the following op-
timization problem:

arg min
v
g(v), (1)

M ′, S0 |= φ, (2)
P ′(i, j) = 0 iff P (i, j) = 0, 1 ≤ i, j ≤ |S|. (3)

In Equation 1, g(v) is a cost function that encodes the cost
of making the perturbation to model parameters — a typical
function is the sum of squares of the perturbation variables,
i.e., g(v) = ||v||2 = v2

1 + . . . + v2
n. Equation 2 checks if

the modified model M ′ (with S0 as its initial state) satisfies
property φ. Equation 3 forces that no transitions are added
or dropped in M ′ w.r.t. M , only the transition probabilities
are modified. This condition encodes the “local” nature of
the change of M , since Z cannot change the structure or
stochasticity of the underlying model, and the value of ε in
ε-bisimilarity is bounded by the maximum value inZ — this
keeps the model repair problem tractable.

Model Repair can be reduced to a nonlinear optimization
problem with a minimal-cost objective function using para-
metric model checking (Bartocci et al., 2011), yielding an
efficient solution technique. Using parametric model check-
ing (Hahn et al., 2010), Equations 1-3 become:

min g(v), (4)
f(v) ∼ b, (5)
∀v ∈ v : 0 < y(v) < 1. (6)

where ∀vk ∈ v, y(vk) = P (i, j) + vk, where (i, j) are
the indices in the Z matrix corresponding to the non-zero
value vk. This reparameterization of Equation 2, encoding
the satisfiability of φ in M , to the non-linear equation f(v)
in Equation 5 is obtained using a parametric model checker,
e.g., PRISM (Kwiatkowska et al., 2011). Solving the non-
linear objective function in Equation 4 with the non-linear
constraints in Equation 5-6 would give us the optimal Z that
transforms M to M ′ — we can do that using a non-linear
optimization tool, e.g., AMPL (Fourer et al., 1989). If the
nonlinear optimization problem has a feasible solution, it
gives us the optimal values of Z that makes the resulting
model M ′ satisfy φ.

3.2. Data Repair

The non-linear optimization problem for Model Repair does
not always have a feasible solution (Bartocci et al., 2011).
If Model Repair of M becomes infeasible, we take the ap-
proach of modifying dataset D to D′ so that the model
trained on D′ satisfies φ — we solve this using the Data Re-
pair approach, which is a variant of machine teaching (Zhu,
2015) and is defined as:

Given a logical property φ that we would like to satisfy and
a probabilistic ML model M parameterized by Θ that we
want to train using a dataset D, if M does not satisfy φ, can
we “perturb” the given data D by the minimal amount to
get D′ such that a new model M ′ trained on D′ satisfies the
property φ?

Based on the machine teaching formulation (Mei & Zhu,
2015), we define Data Repair as:

arg min
D′,Θ∗

ET (D,D′), s.t. (7)

MΘ∗ , S0 |= φ (8)
Θ∗ ∈ arg min

Θ
[RL(D′,Θ) + λΩ(Θ)], (9)

s.t., g(Θ) ≤ 0, h(Θ) = 0. (10)

Here, the inner optimization models the standard machine
learning objective of regularized empirical risk minimiza-
tion, consisting of the empirical risk function RL and the
regularizer Ω. ET is the teaching “effort” function of mod-
ifying the given dataset D to D′, MΘ∗ indicates a model
that is parameterized by Θ∗, while g and h are other do-
main constraints. Let us consider that the dataset D is trans-
formed to D′ using a data perturbation vector p. For exam-
ple, let us consider that a small set of data points need to
be dropped from D for the resulting trained model to satisfy
φ (e.g., those points could have noisy features or labels).
So, each datapoint di in D is multiplied by (1 − pi), where
pi = 1 indicates that the point is dropped — in this case,
p = {p1 . . . pn}, where n = |D|. Also, let us consider
that the effort function is characterized by the magnitude of
the data perturbation, i.e., ET (D,D′) = ||p||2. Using these
transforms, Equations 7-10 can be reformulated as:
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arg min
p,Θ∗
||p||2, s.t. (11)

MΘ∗ , S0 |= φ, (12)
Θ∗ ∈ arg min

Θ
[R′L(D, p,Θ) + λΩ(Θ)], (13)

s.t., g(Θ) ≤ 0, h(Θ) = 0. (14)

Note that R′L(D, p,Θ) is a reparameterization of
RL(D′,Θ), where we use the fact that D′ is obtained
by perturbing D using p. To solve the non-linear optimiza-
tion formulation in Equations 11-14, we first solve the inner
optimization in Equations 13-14 using maximum likelihood
— this gives us a DTMC model M(p), where the transition
probabilities are rational functions of the data perturbation
vector p. The outer optimization in Equations 11-12 can
then be reformulated as:

arg min
p
||p||2, s.t. (15)

Mp, S0 |= φ. (16)

This is now similar to the formulation in Equations 1-2,
which can be solved using parametric model checking and
non-linear optimization as discussed in Section 3.1. In this
case, we are considering data points being removed — we
can come up with similar formulations for Data Repair when
we consider data points being added or replaced. Note that
the Data Repair approach is useful when Model Repair be-
comes infeasible, a motivation for which is shown through
our case study example in Section 4.

4. Case Study: Car Controller
In this case-study, we will use the running example of the
car-controller described in Section 2. We assume that the
initial values of the DTMC model in Figure 1 are learned
using maximum likelihood estimation from simulated car
traces. We work through 3 different cases:

Model satisfies property: Let us consider the property
Prop1 = Pr>0.99 [F (changedLane|reduceSpeed)] (as
described in Section 1). We consider a model M in PRISM
corresponding to Figure 1 where p = q = 0, i.e., we don’t
consider any Model Repair. M satisfies property Prop1
without the need for any repair.

Model Repair gives feasible solution: Let us consider
the property Prop2 = Pr>0.8[F (reduceSpeed)]. When
we run PRISM model checking on M with p = q = 0
for Prop2, PRISM reports that the property is not satis-
fied from the initial state S0. We subsequently run para-
metric model checking on M , which converts Prop2 to a
non-linear parametric equation: 0.8 < 0.0001(−20000qp+
16700p+ 9800q + 1817). Plugging this as a constraint into
AMPL, we minimize the objective function for model re-
pair: p2 + q2, also considering other constraints that ensure
that the repaired transition probabilities lie in [0, 1]. AMPL
gives the solution p = 0.3609, q = 0.0601, which specifies
the p and q values by which to perturb M to satisfy Prop2.

Model Repair gives infeasible solution: Let us consider
the property Prop3 = Pr<0.1[F (reduceSpeed)]. This
property is not satisfied by M — parametric model check-
ing and non-linear optimization states this to be a “infeasible
problem”, which indicates that Model Repair cannot perturb
M in order to satisfy Prop3. 1 In this case we would need
some method other than Model Repair to make M satisfy
Prop3, e.g., Data Repair.

Data Repair when Model Repair fails: For Prop3, we
next try Data Repair. We consider a dataset, learn the model
based on it using maximum likelihood, and assign proba-
bilities for dropping each point in the dataset. Data Repair
gives a valid solution of the probabilities of dropping data
points, which we use to train the modified model. We run
model checking with the modified model, using PRISM, on
the property Prop3 — as expected, PRISM reports that the
model obtained by Data Repair satisfies Prop3.

5. Related Work
There has been work on training models that capture dy-
namical/temporal behavior, e.g., DBNs (Neapolitan, 2003),
LSTMs (Hochreiter & Schmidhuber, 1997). There have
also been efforts in learning temporal logic relations (Maggi
et al., 2013). However, to the best of our knowledge, tem-
poral logic constraints have not been incorporated into ML
models before. (Sadigh et al., 2014a) study the problem of
human driver behavior using Convex Markov Chains, and
show how we can verify PCTL properties for these models.
(Puggelli et al., 2013) show how Convex MDPs can be mod-
ified to satisfy PCTL formulas. However, these methods fol-
low techniques different from Model and Data Repair.

6. Conclusions and Future Work
Our approach to Trusted Machine Learning (TML) uses
principles from Formal Methods (specifically model check-
ing) for learning ML models that satisfy properties in tem-
poral logic. Our key insight in TML is using techniques
like Model Repair and Data Repair that “locally repair” the
model or the data respectively, to satisfy the properties. In
this paper, we have developed the TML control flow for
Markov Chain models satisfying PCTL properties, and dis-
cussed a possible application of our approach to the domain
of car controllers.

In the future, we would also like to extend TML to other
probabilistic models (e.g., Markov Decision Processes) and
other types of logical properties (e.g., LTL). We would
like to apply TML to other mission-critical domains, e.g.,
robot control, cyber security. We would also like to explore
connections between TML and probabilistic CEGAR algo-
rithms (Hermanns et al., 2008).

1Details at: http://www.csl.sri.com/users/shalini/tml
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