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Stop-and-Go Traffic – Freeway 
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Stop-and-Go Traffic – Arterial 

 Stop-and-go waves
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Impacts of Stop-and-Go Traffic

 Traffic congestion in US 

 42 hours of delay per car commuter

 Costs $960 per auto commuter

Tampa: 11th most congested cities

http://mobility.tamu.edu/ums/report/
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Impacts of Stop-and-Go Traffic

 Fuel consumption & emissions in US 

 70% petroleum fuel consumption

 30% greenhouse gas emission

 Congestion wastes 3.1 billion gallons of fuel /year

Mexico City, MexicoBeijing, China
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Impacts of Stop-and-Go Traffic

 Traffic safety in US

 2,200,000 injuries

 33,000 fatalities
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Why Stop-and-Go

 Humans – Imperfect drivers

 “In the distant future it will be only outlaws driving

cars… can’t have a person driving a two-ton

death machine” – Elon Musk at 2015 Nvidia’s

Annual Developers Conference
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Why Stop-and-Go

 Limitations of human drivers 

 Disconnected 

 Uncooperative 

 Unpredictable

 Slow

 Erroneous

 …
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Connected Vehicles

 Vehicle connection = Information sharing
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Automated Vehicles

 Human drivers → Robot drivers
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Cure: Connection + Automation

 Connected automated vehicles (CAVs)

 Enable trajectory-level vehicle control and 

coordination

 The fundamental highway traffic problem

 Past – accommodating human drivers

 Future - designing robot drivers
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Objectives of This Study

 Efficient and parsimonious algorithm to 

smooth a stream of CAVs along a road

 Applicable to various road facilities
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Infrastructure

 Single lane highway segment [0, 𝐿]

 Fixed signal timing 𝐺, 𝑅, 𝐺,… at location 𝐿
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Entry Boundary Condition

 Indexed by 𝑛 = 1, 2,… , 𝑁

 Entry time 𝑡𝑛
−, speed 𝑣𝑛

−, known a priori
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Physical Bounds

 Trajectory  𝑝𝑛(𝑡

 Speed ] 𝑝𝑛(𝑡 ∈ [0,  𝑣 , acc. ] 𝑝𝑛(𝑡 ∈ [
 
𝑎 ,  𝑎

( )np t
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Exit Boundary Constraint

 Exit during green time: 

mod 𝑝𝑛
−1 𝐿 , 𝐺 + 𝑅 ≤ 𝐺



17

Vehicle Following Safety

 Two consecutive vehicles n-1 and n

 Shadow trajectory 𝑝𝑛−1
s (𝑡 = 𝑝𝑛−1(𝑡 + 𝜏 − 𝑠

 Reaction time t

 Safety spacing s

 Safety constraint:
s

1( ) ( )n np t p t



18

Research Question

 Design CAV trajectories to optimize MOEs

 Travel time, fuel consumption, safety

 Trajectory smoothing
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Travel Time MOE
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Fuel Consumption MOE

 E.g., VT-micro, CMEM, MOVES
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Safety MOE

 Surrogate measure – Inverse Time-To-

Collision (iTTC)
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Trajectory Optimization (TO)

min
𝑝𝑛 𝑡

𝑀( 𝑝𝑛 𝑡  ≔𝛼𝑇 + 𝛽𝐸 + 𝛾 𝑆

subject to

𝑝𝑛 𝑡𝑛
− = 0;

 𝑝𝑛 𝑡𝑛
− = 𝑣𝑛

−,
∀𝑛 (entry)

0 ≤  𝑝𝑛 𝑡 ≤  𝑣;

 
𝑎 ≤  𝑝𝑛 𝑡 ≤  𝑎,

∀𝑛, 𝑡 (kinematics)

mod 𝑝𝑛
−1 𝐿 , 𝐺 + 𝑅 ≤ 𝐺 , ∀𝑛 (exit)

𝑝𝑛 𝑡 ≤ 𝑝𝑛−1(𝑡 + 𝜏 − 𝑠, ∀𝑛 ≠ 1 (safety)

Infinite dimension
High nonlinearity

Differential

equations 
Non-

convexity

Vehicle 

interactions
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Forward Shooting Process (n = 1)

 Accelerate with rate   𝑎f up to speed  𝑣

 1st variable: forward acc.  𝑎f ∈ [0,  𝑎]

acceleration  𝑎f

speed  𝑣
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Forward Shooting Process (n = 1)

 Then maintain speed  𝑣 all the way 

 Hit the red light?

acceleration  𝑎f

speed  𝑣
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Backward Shooting Process (n = 1)

 Shift the section above location 𝐿 rightwards 

to the next green phase

shift

speed  𝑣

acceleration  𝑎f
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Backward Shooting Process (n = 1)

 Back up with acceleration  𝑎b down

 2nd variable: backward acc.  𝑎b ∈ [0,  𝑎]

shift

speed  𝑣

acceleration  𝑎f

acceleration  𝑎b
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Backward Shooting Process (n = 1)

 Merge with deceleration 𝑎b

 3rd variable: backward dec. 𝑎b ∈ [0,  𝑎]

shift

speed  𝑣

acceleration  𝑎f

acceleration  𝑎b

deceleration 𝑎b
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Backward Shooting Process (n = 1)

 Merge the forward and backward trajectories

 Obtain a feasible trajectory 𝑝1

shift

speed  𝑣

acceleration  𝑎f

acceleration  𝑎b

deceleration 𝑎b

𝑝1
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Forward Shooting Process (n > 1)

 The same till blocked by 𝑝𝑛−1
s (𝑝𝑛−1’s shadow)

 Pause at a proper place

𝑝𝑛−1 𝑝𝑛−1
s

𝑝𝑛
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Forward Shooting Process (n > 1)

 Merge into 𝑝𝑛−1
s with deceleration 𝑎f

 4th variable: forward dec. 𝑎f ∈ [0, 𝑎]

𝑝𝑛−1 𝑝𝑛−1
s

𝑝𝑛

deceleration 𝑎f
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Forward Shooting Process (n > 1)

 Then exactly follow 𝑝𝑛−1
s

𝑝𝑛−1 𝑝𝑛−1
s

𝑝𝑛

deceleration 𝑎f
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Backward Shooting Process (n > 1)

 The same as that for n = 1

𝑝𝑛
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Shooting Heuristic (SH) Outcome

 A small number of analytical sections

 four variables:  𝑎f,  𝑎b ∈ 0,  𝑎 , 𝑎f, 𝑎b ∈ [0, 𝑎]
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Gradient – Based Algorithm

Acceleration 

values 𝑎f,  𝑎f, 𝑎b,  𝑎b
Trajectory set 

𝑃SH(𝑎f,  𝑎f, 𝑎b,  𝑎b 

Evaluation MOEs 

𝑀(𝑃SH 

Initialization

Are terminal 

criteria met? 

Return 𝑃SH

Yes

Update

Shooting heuristic 

(SH)

Search an 

improvement 

gradient

No
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Benchmark (Top) vs. SH (Bottom)
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Benchmark vs. SH
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Speed Harmonization in Mixed Traffic

37

Legend
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Speed Harmonization in Mixed Traffic

38

1) Prediction

problem

2) Shooting

heuristic

problem

Sensors
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39

 Numerical example results:

Speed Harmonization in Mixed Traffic
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Speed Harmonization in Mixed Traffic

40

 Numerical example results:

 12.9% improvement in throughput

 12.6% improvement in fuel consumption and emissions

highway_traj_case_1_3.avi
highway_traj_case_1_3.avi
highway_traj_case_2_3.avi
highway_traj_case_2_3.avi
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Headways in Mixed Traffic

41

 Stochasticity

 HV

 CAV

0.7 2.4 h (s)

Freq.

0.3 2.0 h (s)

0.5 2.6 h (s)

0.6 2.6 h (s)

Freq.

Freq.

Freq.
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AV Platooning Lane Management

42

D: mixed traffic demand
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Ongoing Research

 Field Tests

FHWA Turner Fairbank Testbed Chang’an University Test Track, China
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Reduced Scale (SVIL) Platform

Driving simulator Traffic simulatorReduced Scale Model

Positioning 
Tag

ZigBee 
Module

Infred sensor

Speed IMU

o
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t
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s
d
u
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e
r

Intelligent vehicles

– Integration of hardware, communications, sensors, human and computer 
simulation

– Expandable modules, controlled environment

– Low cost (<100K for the whole platform), no safety concern, customizable

– Ideal for testing new CACC and AV trajectory control algorithms

– Behaviors need to be calibrated to be consistent with the full scale 
counterparts
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AV Sharing

 Uber’s Vision

+

Driverless Car Shared Car
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Network AV Sharing Optimization
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Test Data
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Results

Scenari

o
VUR VMT (miles) VMT Ratio

1% of Daily Demand

𝜃 𝜇=5 𝜇=15 𝜇=100 𝜇=5 𝜇=15 𝜇=100 𝜇=5 𝜇=15 𝜇=100

0 3.80 12.56 12.56 11013 12983 12998 0.97 1.14 1.15

5 1.79 2.35 2.36 11095 12493 12525 0.98 1.10 1.10

10 1.44 1.61 1.61 11199 11973 11973 0.99 1.06 1.06

20 1.08 1.08 1.08 11326 11396 11396 1.00 1.00 1.00

30 1.00 1.00 1.00 11343 11343 11343 1.00 1.00 1.00

2% of Daily Demand

𝜃 𝜇=5 𝜇=15 𝜇=100 𝜇=5 𝜇=15 𝜇=100 𝜇=5 𝜇=15 𝜇=100

0 4.03 13.90 13.90 21974 25706 25722 0.97 1.14 1.14

5 1.81 2.39 2.39 22147 24912 24943 0.98 1.10 1.10

10 1.44 1.60 1.61 22335 23778.34 23809.73 0.99 1.05 1.05

20 1.08 1.09 1.09 22597 22735 22735 1.00 1.00 1.00

30 1.00 1.00 1.00 22631 22631 22631 1.00 1.00 1.00
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Discussion of AI

 Similarity between transportation networks 

and images allows adaptation 
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Discussion of AI

 Traffic flow physics (car following behavior,) 

can expedite training of data-driven models
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Discussion

 Learning based optimization for trajectory (or 

traffic) control



Thank you
xiaopengli@usf.edu

813-974-0778
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