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Abstract
In this work, we investigate how to propagate anno-

tated labels for a given single image from the image-level

to their corresponding semantic regions, namely Label-to-

Region (L2R), by utilizing the auxiliary knowledge from

Internet image search with the annotated image labels as

queries. A nonparametric solution is proposed to perform

L2R for single image with complete labels. First, each la-

bel of the image is used as query for online image search

engines to obtain a set of semantically related and visu-

ally similar images, which along with the input image are

encoded as Bags-of-Hierarchical-Patches. Then, an effi-

cient two-stage feature mining procedure is presented to

discover those input-image specific, salient and descrip-

tive features for each label from the proposed Interpola-

tion SIFT (iSIFT) feature pool. These features consequently

constitute a patch-level representation, and the continuity-

biased sparse coding is proposed to select few patches from

the online images with preference to larger patches to re-

construct a candidate region, which randomly merges the

spatially connected patches of the input image. Such can-

didate regions are further ranked according to the recon-

struction errors, and the top regions are used to derive the

label confidence vector for each patch of the input image.

Finally, a patch clustering procedure is performed as post-

processing to finalize L2R for the input image. Extensive

experiments on three public databases demonstrate the en-

couraging performance of the proposed nonparametric L2R

solution.

1. Introduction
Label-to-Region (L2R) refers to the task of assigning the

labels or keywords annotated at image-level to the unknown

local semantic regions within an image. This task is bene-

ficial for improving keyword based image search with the

awareness of semantic image content. However, it is usu-

ally laborious to manually annotate the image labels, both

at region-level and image-level. In this work, we present

a novel framework on L2R assignment for single input im-
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Figure 1. Illustration of the proposed nonparametric L2R-by-

Search task.

age, by utilizing the raw outputs of Internet image search re-

sults. In fact, for a given image label, we can use it as query

on an image search engine, such as BING or GOOGLE, to

obtain a set of semantically related and visually similar im-

ages, which share a common label/category with each other.

This cross-image label context can be utilized to derive the

label-specific representations, which are then used to parse

the input image into local semantic regions. Figure 1 illus-

trates the input and output of the proposed Label-to-Region

framework, characterized by its remarkable simplicities: i)

the input is one single image with label annotation, and ii)

it does not require any database of training images that are

manually prepared to build object models.

In the literature, although the specific task of Label-to-

Region has not been extensively studied before, there are

many related works about image parsing and region label-

ing [6]. In general, these algorithms involve building object

appearance models, as well as higher-level spatial context

models in order to overcome the limitations of appearance

models. Both types of parametric models require manually

prepared training data containing labels at the region level,

even though they do not require the knowledge of what la-

bels are present. In particular, there are some related works,

known as simultaneous object recognition and image seg-

mentation [13, 26]. These algorithms usually assume that

there is only one single label contained in each image, or

require manual efforts to prepare the training data [23, 8].

Also, other methods [15, 19] aim to explore the inter-label

or label-to-scene correlation, and thus can handle only some

specific categories. In contrast, the proposed nonparametric

solution has fewer limitations to the input data or the label

annotations.
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There are also some previous efforts that focus on how

to learn object models from the Internet image searching re-

sults [18] or unlabeled image collections [27]. These meth-

ods are usually based on parametric models, and thus the

system performance is limited by the generalization abil-

ity of the learned models. Wang et al. [24] formulated the

image annotation task in a divide-and-conquer framework

and proposed a model-free method for image annotation by

mining the image search results. Their method, however,

is hindered by one strong assumption, i.e., for each input

image at least one near-duplicate can be detected in the im-

age dataset, which cannot be always satisfied in practice.

In fact, to our best knowledge, no previous efforts ever in-

vestigate how to parse a single image into semantic regions

by utilizing the outputs of image search engine. It is also

worth noting that L2R is different from learning to annotate

regions based on weakly labeled data [4] because no object

models need to be learned in our case.

In general, the difficulties of L2R-by-Search task lie in

the following aspects. First, the searching results usually

contain a significant number of “noise” images, which are

semantically somewhat related but perceptually different

with the input image. Second, there are usually large intra-

label variations in the obtained images, meaning that two

image regions belonging to the same label may have dra-

matically different visual appearance characteristics.

We propose a nonparametric solution that addresses the

above issues. In our work, an image is represented as a

Bag-of-Patches (BOP) at different scales to exploit the rich

cues in an image. We also propose a variant of the widely

used SIFT [5] feature. Based on the possibly sparse interest

points detected by SIFT, a set of new points are interpo-

lated for enhancing the image description capability. We

refer to it as Interpolation SIFT (iSIFT). After encoding the

BOP representation with iSIFT, an efficient feature mining

procedure is introduced for each label to prune the noise

images as well as the image patches that are not character-

istic for the specific label. As a result, the remaining fea-

tures are distinctive and descriptive for a specific label and

can be used to select relevant patches for a specific label of

the input image. However, the image patches in BOP rep-

resentation are usually of different scales and it is not ap-

propriate to directly compare the feature similarity between

such patch pairs. Also, since semantic regions cannot be

directly obtained, in this work, we instead propose to first

extract candidate regions, by merging from the spatially co-

herent and perceptually similar image patches in the input

image, and then use the detected patches of each label to

reconstruct the candidate regions, under the hypothesis that

those patches selected for reconstruction should come from

a small number of semantically similar images. The recon-

struction errors are then used to predict the confidence of

containing one specific label, for candidate regions.

The Label-to-Region assignment is facilitated by cross-

image correlation and the reconstruction of a candidate se-

mantic region from a set of image patches is achieved by

a sparse coding formulation. The basic philosophy is that

an image region/patch can be sparsely reconstructed using

other image patches belonging to the same semantic la-

bel. In addition, an intuitive way to obtain robust corre-

spondence between the input image and the Internet images

is to enforce that the matched image patches are spatially

connected to each other. Therefore, we additionally intro-

duce a continuity-biased prior to favor larger size patches

for reconstruction of candidate regions. Based on the re-

construction coefficients, we can calculate for one image

region/patch the confidence of belonging to each label and

then fuse all the results to distribute the image labels to

those contextually derived semantic regions merged from

multiple patches. The proposed L2R-by-Search process has

the following characteristics and advantages: i) the sparsity

and continuity-biased priors are used to ensure the reliabil-

ity of label assignment, ii) it does not require exact image

parsing, which remains an open problem for real world im-

ages, and iii) no generative or discriminative models need

be learned for each label, and thus it is extremely scalable

for applications with large-scale image sets as well as large

semantic ontology.

2. Nonparametric Label-to-Region by Search
2.1. Overview of Problem and Solution

Figure 2 shows the overall flowchart of the proposed so-

lution to L2R-by-Search. First, each given label of the in-

put image is used as a query for the Internet image search

engines to obtain a set of semantically related images. Sec-

ond, we segment both input image and online images re-

turned from image search engine into local atomic image

patches to obtain the so-called bag-of-patches (BOP) repre-

sentation. Then, a label-specific feature mining procedure is

employed for each label to discover distinctive and descrip-

tive features from the proposed Interpolation SIFT (iSIFT)

feature pool. These features are used to discover the patch-

level label-specific representations. Next, we construct the

candidate regions, by initially clustering the spatially con-

nected image patches within the input image, and then pro-

pose a sparse coding formulation to reconstruct each can-

didate region. In reconstruction, with the multi-scale rep-

resentation of BOP, the continuity-biased sparsity prior is

introduced to select a small number of patches from the on-

line images with preference to larger patches. The candidate

regions are further ranked based on the reconstruction er-

rors and the top ones are used to derive the label confidence

vector for each atomic patch of the input image. Finally, a

patch clustering procedure is performed on the input image

as a post-processing step to obtain the ultimate L2R assign-

ments. It is worthy noting that the entire parsing procedure

for a single input image is performed automatically and in-
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Figure 2. The flowchart of L2R-by-Search procedure. More details refer to the text in Section 2.1.

dividually, making it less laborious and extremely scalable

for large-scale image set.

2.2. Image Representation

2.2.1 Bag-of-Patches

An image usually contains a set of semantic regions that

are merged from the atomic patches. Each homogeneous

patch consists of the pixels that are spatially coherent and

perceptually similar with respect to certain appearance fea-

tures, such as intensity, color and texture. In order to capture

rich cues contained in an image, like in [3], we represent an

image by constructing a hierarchical tree with the atomic

patches as the leaf nodes. Each node of the tree represents

a localized image patch that is either further divided into

smaller patches, or merged with other patches at the same

level to form the parent node. We also remove the links

between nodes to obtain an ensemble of image patches at

different scales, collectively called the Bag-of-Patches.

..
.

...

Figure 3. Illustration of patch tree (left) and bag-of-patches (right).

In the implementation, we use the graph-based seg-

mentation algorithm in [16], which incrementally merges

smaller-sized patches with similar appearances and with

small minimum spanning tree weights. We slightly mod-

ify the original algorithm [16] as follows. First, we re-

size all the images into a roughly equal resolution and ini-

tialize each pixel as one atomic patch. Then, we use the

color features to describe the appearance of an initial im-

age patch and apply the algorithm [16] to merge the smaller

patches into larger ones. This step iterates until all the im-

age patches are merged into one single patch, namely the

original image. At each iteration, multiple patch pairs are

merged and labeled the same depth in the final hierarchical

patch tree. On Intel Xeon X5450 workstation with 3.0GHz

CPU and 16GB memory, it takes less than 0.2 second to

segment one image. Figure 3 shows an exemplary result

of this segmentation step. Note that our proposed solution

is general and not tied to any specific image segmentation

algorithms. The only assumption of this step is that each

atomic patch, i.e., the leaf node of the patch tree, is entirely

within an object/label. This makes our overall algorithm

less sensitive to the quality of the image segmentation step.

2.2.2 Interpolation SIFT features

SIFT (Scale-Invariant-Feature-Transformation) [5] feature

has been utilized for many vision and multimedia prob-

lems, including stereo matching, object recognition, and

image retrieval. Its success is due to its robustness to image

noises and scale changes. SIFT feature, however, is gener-

ally sparsely detected, that is, given one input image, only

the salient interest points are described and the rest of the

image, although also potentially informative, are ignored.

In this work, in order to generate more informative descrip-

tion of the input image, we propose a variant of the SIFT

descriptor based on linear interpolation in the scale space

and refer to it as interpolation SIFT (iSIFT).

The basic idea of iSIFT is to interpolate some new inter-

est points between the sparse interest points detected by the

standard SIFT detector [5] to enhance the image descrip-

tion capability. Collecting these initially detected points

as source anchors, we perform a 2D Delaunay triangula-

tion [14] to obtain a set of non-overlapping triangles and

assume the three vertices of each triangle fall on the same

object plane 1. Thus, the parameters of these interest points,

including location and scale, should vary smoothly among

different vertices of one triangle. For each triangle, one new

interest point is generated and the corresponding parameters

of location and scale are set as the median of those for the

triangle vertices. Figure 4 (a) illustrates the interpolation

procedure, where we indicate the scales and orientations of

the detected SIFT features by circles of different sizes and

directions. The red crosses denote the interest points de-

tected by the algorithm in [5] and the blue crosses denote

the newly added iSIFT feature points. Herein, we set the

minimal size of triangles for interpolation as 10 pixels. Fig-

ures 4 (b-c) show the initially detected interest points and

the newly interpolated ones by red crosses and blue crosses,

respectively. Generally, the advantages of iSIFT feature in-

clude: i) it is the denser version of the original sparse SIFT

features and thus can capture more image information, ii)

linear interpolation does not add much computation cost

over the original dense SIFT features [2], and iii) it is in-

tuitively more informative than the dense SIFT descriptor

of fixed scale [2].

2.3. Label-Specific Feature Mining by Search

In this work, an image is described as a visual document

composed of repeatable and distinctive basic visual ele-

1This assumption is clearly correct when all the triangle vertices fall

on the same object. If the vertices fall on different objects, we can also

reasonably assume that the points on the border should be smooth on the

two connected planes.

3322



Figure 4. Interpolation SIFT. See more details in Section 2.2.2.

ments that are indexable, namely the Bag-of-Words (BOW).

Generally, visual words are usually specific for each label

and the visual representation of different category should

be distinct from each other. After extracting iSIFT features

from image sets, we adopt the method in [22] to build the

visual words vocabulary, and set the total number of vi-

sual words as NW =5000. As Figure 4 illustrates, many vi-

sual words in the right image appear on the cluttered back-

ground instead of the foreground region, namely “building”.

In order to obtain the informative visual representation for

one specific label, we should remove these irrelevant words

from the obtained visual vocabulary.

In practice, visual words in each label are only a portion

of the entire vocabulary, which means that only a part of the

vocabulary is descriptive or informative for the correspond-

ing label. In order to capture objects or scenes, the visual

representations should have the following properties: i) the

visual words should appear on the input image, ii) the visual

words that are informative for a specific label should appear

more frequently than other words in the images containing

the label, or they should be less frequent in the images not

containing the label, and iii) the descriptive visual words

should be located on the objects or scenes.

Based on these motivations, we develop a two-stage pro-

cedure for deriving the label-specific and input-image spe-

cific visual words. First, we remove the words that do not

appear in the input image. This hard constraint can prune

most of the invalid visual words from the online images re-

turned by the image search engine. Second, we formulate

the visual words mining process in a probabilistic inference

framework to model two important cues: 1) frequency of

each visual word and 2) co-occurrence of each word with

other words. Letting W = {W1, W2, . . . , WNW
} denote

the visual words dictionary, for each label c, we have,

P (W |c) ∝ exp{

NW
X

n

φ(Wn) + λ
f

X

m6=n

φ(Wn, Wm)} (1)

where the term φ(Wn) denotes the frequency of the vi-

sual word Wn itself, the term φ(Wn, Wm) denotes the co-

occurrence of words Wn and Wm, and λf is the tunable

tradeoff parameter (we fix it as 1 in this work). With this

formulation, we can transform the task of label-specific fea-

ture mining task into maximizing P (W |c), which can be

efficiently solved by a number of inference methods. In

this work, we use the Belief Propagation (BP) algorithm [7]

from the Bayes Net Toolbox [12]. According to P (W |c),
the label representation can be generated by selecting the

top ranked candidates or choosing the ones with rank val-

ues larger than a threshold. In this work, we select the

top twenty percent of these ranked words as the final label-

specific representation. Figure 5 shows in top row of each

case the selected visual words after the first step, and in

bottom row the final selected words after the second step.

Clearly, most of the final selected words are located on the

objects, indicating that they are descriptive to the specific

label. Note that the mining results are only used to choose

the image patches that contain the salient points, whereas

the feature descriptor for each patch is still based on the

original generated visual words set.

aeroplane

mountain

Figure 5. Feature mining results. For each plot, 1st column: input

image and query label; 2-4th columns: returned images by search

along with the interest points selected after the first step (top row)

and the second step (bottom row).

Let I denote the input image and z ∈ RNC the label

confidence vector of an image patch within I , where NC

is the total number of labels. The component z(c) indi-

cates how likely the image patch contains the c-th label. We

generate candidate regions within I , and denote their corre-

sponding feature representations as {y1, . . . , yi, . . .}, yi ∈
RNW . We denote NO as the number of the online im-

ages (fixed for each category), and Ic,j the j-th online im-

age related to the c-th label. After applying the proposed

feature mining procedure on those images, for each cate-

gory c, the obtained feature patches in Ic,j are arranged

in a matrix, denoted as Xc,j = [xc,j,1, . . . , xc,j,nc,j
] ∈

RNW ×nc,j , where nc,j is the number of selected patches

within Ic,j . We further collect and arrange the visual words

representations of all the NC labels into one single ma-

trix, given by A = [X1, . . . , Xc, . . . , XNC
], where Xc =

[Xc,1, Xc,2, . . . , Xc,NO
], and use A as the basis dictionary

in the following reconstruction step.

2.4. Sparse Region Coding with Continuity-Prior

We propose a sparse coding formulation to discover the

cross-image region/patch correspondence. This is achieved

by predicting how well a candidate region can be recon-

structed from the patches generated by the feature mining

step discussed in previous subsection. In fact, if sufficient

patch samples are available for each label, it is possible to
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represent a candidate region as a sparse and linear combi-

nation of the patch representations. Letting y denote the

feature descriptor of the candidate region, we have,
y = A α0 + ε, (2)

where α0 is the coefficient vector, whose entries are ex-

pected to be zeros except for those samples containing the

same label as y, and ε ∈ RNW is a noise vector which ex-

plicitly accounts for the possible sparse noises.

Theoretically, α0 can be obtained by solving the lin-

ear system of equation y = Aα, but when NW < N =
∑

c,j nc,j , there exist infinite number of possible solutions.

A possible way to select a sparse solution is to minimize

the `0-norm of the solution, and a recent development in

theories on sparse representation [10] reveals that if the `0-

norm solution α̂0 is sparse enough, the solution from the

`0-norm minimization can be recovered by the solution to

the `1-norm minimization problem, namely,

arg min
α,ε

||α||1 + ||ε||1, s.t. A α = y + ε. (3)

This optimization problem is convex and can be trans-

formed into a general linear programming problem. There

exists a globally optimal solution that can be solved effi-

ciently using the classical `1-norm optimization toolkit [1].

The reconstructions of candidate regions are with spar-

sity prior, which means that we prefer to select as few

patches as possible. Since our goal is to discover the cross-

image correspondence, it is natural to additionally enforce

that the selected patches are perceptually and spatially co-

herent. This motivation leads to the preference to image

patches with larger size, namely the continuity-biased prior.

Mathematically, let B ∈ RN×N denote the correlation ma-

trix, in which, if the element Bij = 1 for i 6= j, then the

i-th patch is the grand-parent node of the j-th patch; other-

wise, Bij = 0. Also, the diagonal elements of B are set as

1. Then, we rewrite Eq. (3) as,

arg min
α,ε

||α||1 + ||ε||1 + ||Bα||1, s.t. y = A α + ε, (4)

which additionally imposes the continuity prior by setting

the weight of a node as the summation of the corresponding

child atomic patches. Due to the sparsity prior, minimizing

the `1-norm term ||Bα||1 in Eq. (4) shall result in the prefer-

ence to the larger size patches, namely the upper-level nodes

in the patch tree, since the selection of a subset of smaller

size patches shall bring larger `1-norm than the selection of

one single larger size patch.

Letting γ = Bα,

y′ =

[

y

0N×1

]

, α′=

[

α

ε

γ

]

, A′=

[

A, INW ×NW , 0NW ×N

B, 0N×NW ,−IN×N

]

,

we can reformulate (4) as,
α̂
′
1 = arg min

α′

||α′||1, s.t. y
′ = A

′
α
′
, (5)

where the derived coefficient α̂1 is both sparse and

continuity-biased. Figure 6 demonstrates one example com-

parison result on how a candidate region is reconstructed

from the bag of patches guided by different priors. For
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Figure 6. Example reconstruction results with different priors. The

1st column shows a candidate region and its source image. In other

columns, the top row shows the patches selected using sparsity

prior only, and the bottom row shows the patches selected using

both the sparsity and continuity-biased priors. The input image is

from MSRC dataset [9] and the online images are from BING.

ease of display, we rank the selected image patches accord-

ing to the reconstruction coefficients, and plot only the top

five ones. From the results, we can observe that adding the

continuity-biased prior leads to selecting larger and more

meaningful patches in BOP representations.

Algorithm 1 . Label-to-Region Assigning via Sparse rep-

resentation.
1: Input: selected patch-level label representation A =

[X1, . . . , XNC ]; feature of one candidate region y ∈ RNW ;
2: Normalize the columns of A and y to have unit `2-norm; Ini-

tialize the label confidence vector zy ∈ RNC of y, as zy = 0;

3: Solve the optimal solution α̂ according to (5);

4: For each label c annotated with the input image, calculate for

y the confidence of belonging to the c-th label based on the re-

construction residual, namely, zy(c) ∝ exp{−‖y − Aα̂c‖2};

5: Output: zy ∈ RNC ;

Algorithm 2 . Post-processing for L2R-by-Search

1: Input: label confidence vector z of the input image I ; label

confidence vectors for all the atomic patches in image I , de-

noted as {zi}, i = 1, . . . , NA, where NA is the number of

atomic patches in the BOP representation of I ;

2: Set K as the number of image labels provided for I ;

3: Cluster the atomic patches by grouping all the patch-level

label confidence vectors {z1, . . . , zNA} into K clusters, de-

noted as {O1, . . . , OK};

4: For each cluster Oc ∈ {O1, . . . , OK}
4.3.1: Let zm denote the summed label vector for each cluster,

calculated as zm =
P

zj∈Oc
zj ;

4.3.2: Set zm as the label vector of each atomic patch belong-

ing to the cluster Oc;
5: Merge those patches within the same cluster to form a seman-

tic region, and set its label as the one with the largest value in

the label vector and without overlapping the label with other

regions.
6: Output: Merged patches with semantic labels;

2.5. L2R Assignment via Sparse Representation
Given a candidate region y of the input image and the

feature basis matrix A, we first compute its sparse represen-

tation α̂ by solving (5). Then, we classify y based on how
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well the coefficients associated with all image patches of

each label reproduce y. Letting α̂c be a new vector whose

nonzero entries are the entries in α̂ that are associated with

the label c, one can approximate the given candidate region

by using α̂c, as ŷc = Aα̂c, and calculate the label confi-

dence of y for the c-th label based on these approximations

between y and ŷc,

||y − Aα̂c||2, c = 1, 2, . . . , NC . (6)

Algorithm 1 summarizes the entire L2R procedure.

Suppose the label confidence vector for each atomic

patch in the input image has been derived by Algorithm 1,

we adopt the K-means clustering approach over all the con-

fidence vectors of the atomic image patches to generate K
clusters, where K is the number of labels annotated for the

input image. Thus, each cluster corresponds to one single

semantic region and the patches belonging to the same clus-

ter should be assigned with one identical label. Algorithm

2 summarizes the entire post-processing procedure.

3. Experiments

In this section, we systematically evaluate the effective-

ness of our proposed iSIFT feature pool, feature mining pro-

cedure and the continuity-biased sparse coding formulation

for Label-to-Region assignment task.

3.1. Datasets
We use three publicly available datasets, MSRC [9],

COREL, and the dataset collected by Stephen et al. [20] as

test or input images in this work. The MSRC dataset con-

tains 591 images from 23 categories/labels and region-level

ground-truths. There are about 3 labels on average for each

image. We remove the images which are annotated with

only one single label, resulting in about 500 images. The

second dataset is from COREL collection, the most broadly

adopted dataset for image retrieval. We use the subset pro-

vided in [11], which includes 4, 000 images from 8 labels

and the corresponding ground truth of region-level anno-

tations. The third database is collected by Stephen et al.

[20], which contains 715 images from LabelMe, MSRC and

PASCAL VOC. The ground truth of region-level annota-

tions are available and the images are from 7 labels. We re-

size the images to the extent of 400/max(width, height),
and set the minimal image patches in BOP representation

as 400 pixels in a tradeoff between efficiency and per-

formance. Thus, there are about 300-400 image patches

contained in each BOP. We also randomly select 800 im-

ages from above 3 databases and utilize their correspond-

ing iSIFT features to generate the NW =5000 visual words.

All the experiments are performed on an Intel Xeon X5450
workstation with 3.0 GHz CPU and 16 GB memory. The

code is implemented in MATLAB platform. Generally, the

proposed method can perform L2R for one image within

30 minutes without any code optimization based on the top

ranked NO=100 online images for each label.

3.2. Baselines

We implement the proposed Label-to-Region Assign-

ment vis Sparse representation (LAS) algorithm using the

`1-Magic package [1], which first translates (5) into a linear

programming problem and then employs the primal-dual al-

gorithm to perform the optimization. We set the tolerance

factor as 0.003 and the maximum number of primal-dual

iterations as 50.

Two types of algorithms are used as baselines to evalu-

ate the proposed bi-layer sparse coding formulation in the

label to region assignment task. One is a SVM-based al-

gorithm that first learns a model from the training samples

for each label and then applies the obtained models to the

testing samples extracted from the input image. Herein, the

training samples indicate the patches selected by the pro-

posed feature mining procedure. For each classifier, a patch

is considered as a positive sample if it comes from the on-

line images of the specific label, otherwise it is considered

as a negative sample. In the training stage, we choose equal

number of positive and negative samples and remove the

excessive ones to balance the training of SVM. In testing,

we first apply each classifier to image patches of different

scales and then use the top ranked results to obtain the confi-

dence of containing the specific label for each atomic patch

in the input image. Results from all the classifiers are then

fused to generate the NC -dimensional label confidence vec-

tor, which is further processed by Algorithm 2 to obtain the

labels of the atomic patches. Note that the training and test-

ing procedures work on image patches of different scales

and the ultimate goal is to obtain the semantic label anno-

tation at the region-level. A binary SVM is implemented

based on the SVM library [17]. A Gaussian Radial Basis

Function kernel is used with the kernel parameter set as 1.

The other baseline algorithm uses the traditional K-NN

method. In implementation, for each image patch of the

input image, we select 50 nearest ones from the patches en-

semble selected by the proposed feature mining procedure.

Letting Sc denote the number of patches belonging to the

c-th label, we can calculate the label confidence vector for

specific image patch as 1

50
[S1, . . . , SNC

], and the top ranked

ones in BOP representation are used to calculate the confi-

dence vector of each atomic patch, which are further pro-

cessed by Algorithm 2 to obtain the ultimate L2R results.

In order to evaluate the proposed iSIFT feature pool, we

implement both LAS and the baselines by using two dif-

ferent feature descriptors: I) the standard dense SIFT fea-

ture [2] that collects one SIFT feature for each lattice of

10 × 10 pixels with a fixed scale factor of 16 pixels, and

II) the iSIFT feature, where we generate new points for the

triangles with size being no less than 10 pixels. Moreover,

we also implement a simplification of the proposed solution

to demonstrate the improvement brought by the proposed

continuity-biased prior. The overall procedure is identical
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Figure 7. Example results on the MSRC, COREL and database by Stephen et al. in [20]. The original input images are shown in columns

2, 4, 6, 8 and the corresponding parsed images associated with their region-level labels are shown in columns 3, 5, 7, 9.

to the LAS, except that the system optimizes Eq. (3), in-

stead of Eq. (5), in the 3rd step of Algorithm 1. For ease

of representation, we denote the versions with different pri-

ors as: A) with only the sparsity priors, and B) with both

the sparsity and continuity-biased priors. Thus, we obtain

seven algorithms, i.e., 1) SVM-I; 2) SVM-II; 3) KNN-I; 4)

KNN-II; 5) LAS-A-I, 6) LAS-A-II and 7) LAS-B-II.

The L2R assignment performance is evaluated in both

qualitative and quantitative manners. The quantitative

Label-to-Region assignment accuracy measures the per-

centage of pixels with agreement between the assigned label

and ground truth.

3.3. Results and Discussions

Qualitative Evaluations. We show example results of

L2R assignment in Figure 7 for the MSRC, COREL and

database used in [20], respectively. The image search en-

gine used here is BING. These results over various con-

ditions well validate the effectiveness of our proposed so-

lution. It is worth noting that our algorithm is scalable to

large-scale applications and can be easily extended to per-

form online image parsing. The algorithm is amenable to

fast implementation since the entire algorithm is suitable

for parallel computation, and also pre-processing tricks can

be utilized to further improve the computational efficiency.

For example, one may first search all the possible labels to

obtain the related online images and then perform BP al-

gorithm in the feature mining step to build an off-line pre-

liminary feature basis dictionary for each label. Also, the

text-based semantic dictionary (e.g. WORDNET) can be

used to discover the semantically related keyword or label

groups to further improve the feature pruning procedure by

downloading more related images.

Quantitative Evaluations. We report in Table 1 a com-

parison among the accuracies of different algorithms on

these three datasets. For each input image, we use two dif-

ferent image search engines, BING (B) and GOOGLE (G).

The detailed results for individual categories are shown in

Figure 8. We can have following observations. 1) The pro-

posed solution, namely LAS-B-II, achieves much higher

accuracies on all the three databases as compared to both

the KNN- and SVM- based methods. This clearly demon-

strates the effectiveness of the sparse coding formulation

for building the cross-image correspondence. 2) The al-

gorithms SVM-II, KNN-II and LAS-A-II, which use iSIFT

feature pool, outperform their counterparts, SVM-I, KNN-I

and LAS-A-I, which use the standard densely sampled SIFT

feature pool, respectively. It well demonstrates the advan-

tages of the iSIFT feature pool over the dense SIFT features

of fixed scale. 3) The comparison results of LAS-A-II and

LAS-B-II show that the continuity-biased sparse coding can

boost the performance of L2R assignment.

We do not further compare our solution with those

algorithms for classifying and localizing objects in im-

ages [13, 26, 23, 19], because: a) our proposed solution

works under the assumption that no region-level label an-

notation is provided for model training, which is however

the general prerequisite for most typical algorithms; b) for

each image label, those algorithms need to learn an individ-

ual detector, and thus are labor consuming and impractical

for large-scale applications; and c) our solution works in an

online fashion, meaning that image parsing is done without

any additional training procedure.

Moreover, our solution distinguishes it from the closely

related work in [25] in the following significant aspects.

First, [25] parses a set of input images in batch by utilizing

the cross-image contextual priors whereas our method can

handle one single input image without any user-provided

contextual knowledge. This makes the proposed algorithm
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Table 1. Comparison of Label-to-Region assignment accuracies of

different algorithms on MSRC, COREL and the database provided

by Stephen et al. [20]. Herein, we use two different image search

engines, BING (B) and GOOGLE (G).

Dataset MSRC COREL Stephen[20]

B G B G B G

SVM-I 0.33 0.29 0.31 0.33 0.38 0.36

SVM-II 0.42 0.36 0.38 0.43 0.42 0.44

KNN-I 0.48 0.45 0.46 0.44 0.46 0.48

KNN-II 0.51 0.51 0.52 0.52 0.50 0.52

LAS-A-I 0.57 0.55 0.56 0.53 0.55 0.58

LAS-A-II 0.62 0.61 0.55 0.59 0.62 0.62

LAS-B-II 0.67 0.63 0.58 0.60 0.64 0.63

Figure 8. Detailed Label-to-Region accuracies on (a) MSRC, (b)

COREL and (c) database by Stephen et al. [20]. The horizontal

axis shows the name of each label and the vertical axis indicates

the Label-to-Region assignment accuracies.

much more appealing for practical applications. Second,

the label propagation algorithm provided in [25] requires

that there are both differences and commonalities between

the label annotations of different input images. Thus it can-

not be directly applied to the COREL dataset as used in this

work, since most of the images are provided with the same

label annotations and there is less cross-image contextual

information to rely on. In contrast, our method has much

fewer limitations to the label annotations and thus is more

attractive. Third, our method achieves a higher accuracy of

0.67 compared to the accuracy of 0.63 in [25] on the MSRC

dataset. It is worth noting that our solution can also be used

for simultaneous multi-label image annotation and parsing

task.

4. Conclusions and Future Work
In this paper, we propose a nonparametric solution for

automatically parsing a single input image with image-level

label annotations into localized semantic regions by utiliz-

ing the auxiliary knowledge from the raw outputs of web

image searches. Since the community-contributed images

with rich tag information are becoming much easier to ob-

tain, we expect that the keyword-query based image search

can greatly benefit by applying our proposed technique to

these tagged images.

The current solution can only process images with rea-

sonably complete label annotation, and in the future we plan

to relax this assumption and further investigate how to han-

dle the images with partial annotation or noisy labels. Ul-

timately, we intend to extend the proposed framework to

perform image parsing for a set of unlabeled images with

semantically related regions.
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