Traffic Operations with Connected and Automated Vehicles

Xianfeng (Terry) Yang
Assistant Professor
Department of Civil, Construction, and Environmental Engineering
San Diego State University
(619) 594-1934; xyang@mail.sdsu.edu
This is a FUTURE CAR

- Automotive control
- Lane changing warning and control
- Self driving
- Vehicle platooning
- Forward collision avoidance
- Providing optimal path
- ECO-Approach and departure at intersections
- Dynamic speed Harmonization
- Advanced traveler information
- Queue warning
- Etc.
Automated Vehicles

Sensor-based Technologies

Warning and Advisory

Partly Automatic

Fully Automatic

Sensor-based Automated Vehicle

Warning and Advisory

Partly Automatic

Fully Automatic

Sensor-based Automated Vehicle

Levels of technologies or capabilities

Levels of Autonomous Car

Decision making by VEHICLE ↑
Sensor technologies
Connectivity technologies (C-ITS)
Control technologies

Autonomous Car

Decision making by DRIVER ↓

Sources: The Economist

Signals from GPS (global positioning system) satellites are combined with readings from tachometers, altimeters, and gyroscopes to provide more accurate positioning than is possible with GPS alone.

Radar sensors

Lidar (light detection and ranging) sensors bounce pulses of light off the surroundings. These are analyzed to identify lane markings and the edges of roads.

Video cameras detect traffic lights, read road signs, keep track of the position of other vehicles and look out for pedestrians and obstacles on the road.

Ultrasonic sensors may be used to measure the position of objects very close to the vehicle, such as cars and other vehicles when parking.

The information from all of the sensors is analyzed by a central computer that manipulates the steering, acceleration and brakes. Its software must understand the rules of the road, both formal and informal.

Radar sensors monitor the position of other vehicles nearby. Such sensors are already used in adaptive cruise-control systems.
Connected Vehicle

- Connectivity technologies
 - DSRC
 - WAVE
 - 3G / 4G
 - DMB

- Communication types
 - V2X : V2V, V2I, V2P, V2B……
 - Car2X
 - Etc.

Connectivity Technologies
(Connected Vehicle)

Connected Automated Vehicle
Why we need Connected Vehicle Technologies?
Why do we need CV technologies

• Safety
 – Intersection Movement Assist

https://youtu.be/q58DzXQ8ae4?t=2m9s
https://youtu.be/2Ac2lgo7Opo?t=37s
Why do we need CV technologies

• Mobility
 – R.E.S.C.U.M.E
 • Response, Emergency Staging and Communications, Uniform Management, and Evacuation
Why do we need CV technologies

- Mobility
 - Platooning
What will happen with AVs only?

- AVs are often designed with conservative control functions (Safety is always the priority).

- Within mixed traffic flow (AVs and non-AVs), AVs may become the “Moving Bottleneck” which will increase the total network delay and reduce safety performance.

- How about 100% AVs on the roads but without CV technologies?
Cooperative Adaptive Cruise Control

• Adaptive Cruise Control (ACC) technology automatically adjust the vehicle speed and distance to that of a target vehicle. ACC uses a long range radar sensor to detect a target vehicle up to 200 meters in front and automatically adjusts the ACC vehicle speed and gap accordingly.

• Adaptive cruise control (ACC) systems can gain enhanced performance by adding vehicle–vehicle wireless communication to provide additional information to augment range sensor data, leading to cooperative ACC (CACC).
CACC v.s. ACC

MILANÉS et al. (2014): COOPERATIVE ADAPTIVE CRUISE CONTROL IN REAL TRAFFIC SITUATIONS, IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 15, NO. 1, pp. 296-305.

Fig. 1. Experimental M56s vehicles.

Fig. 2. Control architecture block diagram.
CACC v.s. ACC

![Graph comparing CACC and ACC](image)

CACC

ACC
How to make the CAV-based system more efficient? (e.g., Data Collection)
Motivations

• It is still challenging to deploy V2V system in practice, because connected vehicles need to share roads with other isolated (non-connected) vehicles;

• Camera sensors can provide rich imagery descriptions of the surrounding environments of the host vehicles;

• To access the traffic statuses of isolated vehicles, an effective but affordable way is to enhance V2V-equipped vehicles with camera sensors;
System Demonstration

- With camera on connected vehicles, the system will first conduct video processing and extract the information of perceived vehicles such as their speeds, locations, and driving behaviors;

- Through V2V platform, isolated vehicles are perceived and then linked with connected vehicles so as to form a dynamic Ad-Hoc Sensor Network which includes all vehicle information.

Connected Vehicle with Vision Support Non-connected Vehicle
Field Demo Test

• Four vehicles equipped with camera sensors are tested on I-15, San Diego.
Step 1: Video Processing on each connected vehicle
Step 2: Construction of dynamic Ad-Hoc Sensor Network
Step 2: Construction of dynamic Ad-Hoc Sensor Network
Traffic Signal Control at Intersections under CAV Environment
The fundamental questions

• Will we even need traffic signals in the future?
 – What happens when the volume increases?
 – Do we see emergent behavior that mimics traffic signals?

• How will we transition during market adoption?
CAV Traffic Signal Research Needs

- Categories of Research Needs -
 - Network Level Control Considerations
 • More than a collection of intersection, heterogeneous path flows, ...
 - User capabilities/characteristics
 • Vehicle, Pedestrians, Trucks, Buses, Bicycles, Motorcycles,…
 - Institutional and Social Issues
 • Culture, cooperative behaviors
 - Traffic flow theory
 • Changes in vehicle behaviors (saturation flow, headway, acceleration, startup lost time, sneakers, ….)
 - Application scenarios
 • Managed Lanes for CAV, Multi Modal, integration of apps – speed harmonization, eco-driving, ….
CAV Traffic Signal Research Needs

- Control algorithms/strategies
 - Trajectory control, multi modal, priority, path based, vehicle dynamics,
- Human factors
 - Passenger/driver limits – acceleration, gaps, …
- Infrastructure adaptation
 - Geometric opportunities (change lane usage/assignment, move the stop bar,…)
- Evolution from today to next generation
 - Levels of Automation (Vehicle Automation, but for signals)
- Impact of shared mobility in traffic control
 - Large fleets of vehicles operating with a common goal
 - Transportation network service providers
Thanks for your attention

Xianfeng (Terry) Yang
(619) 594-1934
xyang@mail.sdsu.edu